

Product Catalog

Contents

- **3** Controlled Environment Experts
- 4 Standards and Certifications
- 5 Walk-In Rooms
- 6 SciBrite® LED Plant Growth
- 7 SciWhite® LED Plant Growth
- 8 Arabidopsis
- **9** Algae
- 10 Low Temperature
- 11 Tissue Culture
- **12** Dew Formation
- 13 Seed Germination
- **14** Incubators
- 15 Drosophila
- 16 IncuWhite®
- 17 SciBrite®
- 18 SciBrite® Spectrums
- 19 SciWhite®
- 20 Customized Lighting Options
- 21 IntellusUltra Touchscreen Interface
- 22 IntellusUltra Control Systems
- 23 WeatherEze®
- 24 Optional Product Features

Controlled Environment Experts

At Percival Scientific, our mission is to help you create better science with the most customized growth chambers available for your controlled environment research.

We engineer, custom-build and install durable and thoughtfully-designed controlled environments for nearly any research need. From bench-top chambers to large grow rooms, we manufacture more than 150 different models of research chambers.

We've been a global leader in the innovative design and manufacture of controlled environment chambers since 1959. Our products are used in all 50 states and in more than 79 countries. Universities, government institutions and private corporations in the U.S. and around the world trust us as a partner in accelerating research that impacts climate, human health and food production.

Located in a farm building on a 12-acre research station near Cold Spring Harbor Lab in New York, two Percival walk-in growth chambers named Mendel and McClintock stand side by side. From the outside, they look clean and industrial, but open their doors (in this video), and you'll see why the renowned lab describes them as "some of the most advanced climate-controlled technology ever developed for plant growth."

Percival designed these twin walk-in rooms with 12 columns of multi-colored SciBrite® LEDs that are independently adjustable. This allows researchers at the lab to grow plants in various environments simultaneously. Cold Spring Harbor Lab partnered with Percival to develop these chambers and advance their discoveries in sustainable farming practices.

Standards and Certifications

UL and ETL Standards

To ensure our products meet international safety and performance standards, Percival Scientific partners with nationally recognized testing labs, including Underwriters Laboratories (UL) and Intertek's Electrical Testing Laboratories (ETL).

ISO 9001:2015 Certification

In September 2019, DQS Inc. issued Percival Scientific ISO 9001:2015 certification, an international standard for a quality management system. The certification is based on Eight Principles of Quality Management, which can be used as a framework for management to guide organizations in continuous improvement. These include Customer Focus, Leadership, Involvement of People, Process Approach, System Approach to Management, Continual Improvement, Factual Approach to Decision Making and Mutually Beneficial Supplier Relationships.

At Percival, we are committed to quality work and processes. The ISO 9001:2015 certification recognizes the efforts of our entire team. It assures our customers that Percival is dedicated to producing environmental chambers that exceed customer expectations and providing continuous improvement of our products, processes and services.

Walk-In Rooms

Percival Scientific excels at customizing chamber solutions for expanding research operations. Our walk-in rooms can be configured for any size production. As your operation grows and changes, we can easily add more rooms and modify your configuration. Our consultants will work closely with you to develop a tailored chamber solution perfect for virtually any application, including C_4 species plant growth, cannabis, food production, insect and reptile rearing, seed storage and stability testing.

- Adaptable for virtually any application
- · Available with SciBrite® or SciWhite® LED lighting
- Wide range of optional custom-designed features and configurations
- Easy programming with Intellus Ultra control system and touch screen

Model	Type/Use	Configuration	Humidity Control	Light Intensity 6" from lamps	Temperature Range with all lights on	Shel	otal ving/ th Area	Gro	imum wing ight	w	Ext idth		imensio		eight
				µmoles/m²/s	°C	ft²	m²	in	cm	in	cm	in	cm	in	cm
CTH-89	Controlled Temperature and Humidity	L5 Five Tiers	40 - 85% RH ± 5%	48360 lumens	4 - 44 ± 1.0	160	14.9	16	40.6	96	243.8	108	274.3	102	259.1
IR-89L5	Incubator	L5 Five Tiers	40 - 85% (Optional)	100	7 - 44 ± 1.0	160	14.9	15	38.1	96	243.8	108	274.3	102	259.1
AR-89L3	Plant Growth	L3 Three Tiers	40 - 85% (Optional)	500	10 - 44 ± 1.0	96	8.9	24	61	96	243.8	108	274.3	102	259.1
MPR-810L3	Plant Growth	L3 Three Tiers	40 - 85% (Optional)	1020	10 - 44 ± 1.0	108	10	26	66	96	243.8	120	304.8	108	274.3
PR-106	Plant Growth	L1 One Tier	40 - 85% (Optional)	1350	10 - 44 ± 1.0	43	4	94	238.8	120	304.8	70	177.8	114	289.6
PR-1010L	Plant Growth	L1 One Tier	40 - 85% (Optional)	1450	10 - 44 ± 1.0	53	4.9	86	218.4	120	304.8	120	304.8	102	259.1
SS-810	Seed Storage	L7 Seven Tier	30% (above 10°C)	48360 lumens	4 - 30 ± 1.0	252	23.2	12	30.4	96	243.8	120	304.8	108	274.3

SciBrite LED Plant Growth

Percival engineered this line of SciBrite® LED plant growth chambers specifically for light quality studies and other experiments requiring specific light wavelengths. You won't find chambers with more LED color options or combinations than these. Programming our SciBrite® lighting is intuitively easy using our IntellusUltra touchscreen, making these chambers some of the best science has to offer.

- Varying light intensity by color, up to 1850 μmoles/m²/s at 6 inches from LEDs
- · Independently dimmable tiers of SciBrite® lighting for superior control of light intensity
- $\bullet \quad \text{Wide range of programmable wavelengths for specific stages of plant development} \\$
- Easy to program with the IntellusUltra control system
- Durable, long-lasting construction and sleek design

Specifications

Model	Con	figuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interioi	Space	To Shelvin Ar		Gro	mum wing ight	wi	Ex dth		imensio pth		ight
			µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
Horizontal	Lighting															
LED-30	L1	One tier	1400	$10 - 44 \pm 0.5$	9.6	0.3	3.0	0.3	25.5	64.8	31	78.7	24.5	62.2	46.2	117.3
LED-36	L1	One tier	1550	$10 - 44 \pm 0.5$	29.7	8.0	5.4	0.5	48	121.9	33.5	85.1	33.6	85.4	77.2	196.1
LED-30	L2	Two tiers	1300	$10 - 44 \pm 0.5$	29.7	0.8	10.8	1	21.6	54.9	33.5	85.1	33.6	85.4	77.2	196.1
LED-41	L1	One tier	1850	10 - 44 ± 0.5	37.2	1.1	6.8	0.6	47.6	121	41	104.1	33.6	85.4	77.2	196.1
LED-41	L2	Two tiers	1550	10 - 44 ± 0.5	37.2	1.1	13.6	1.3	21.6	54.9	41	104.1	33.6	85.4	77.2	196.1

Each color independently dimmable by percentage and by tier - standard four colors include blue, red, white and far-red. Additional colors are available upon request.

SciWhite LED Plant Growth

Our plant growth chambers with SciWhite® lighting feature a white spectrum enriched with red for superior light absorption in plants. The versatility and dependability of these chambers guarantee consistently high production from nearly any kind of plant, ranging from cereals, citrus, grasses and soybean to tomato, cotton, peanut and potato. Researchers have long trusted our standard plant growth chambers for a wide range of applications, including phytopathology research, seed germination, and plant growth and development.

- White spectrum with 660 nm peak red for best light absorption
- Light intensity up to 1,700 μmoles/m²/s at 6 inches from LEDs
- Dimmable light output
- Easy to program with the IntellusUltra control system
- Many sizes and configurations
- Optional SciBrite® lighting

			Model	Con	figuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior	Space Ime	She	otal Iving r Area	Gro	imum wing ight	wi	E x dth		imensio pth		ight
	-					µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
			Horizontal	Lighting]														
			E-30	L1	One tier	870	$7 - 44 \pm 0.5$	9.6	0.3	3	0.3	27	68.6	31	78.7	23.8	60.3	46.2	117.3
				L1	One tier	680	$7 - 44 \pm 0.5$	29.7	0.8	5.4	0.5	49	124.5	33.5	85.1	33.6	85.4	77.2	196.1
			E-36	L2	Two tiers	680	$7 - 44 \pm 0.5$	29.7	0.8	10.8	1	23.6	59.9	33.5	85.1	33.6	85.4	77.2	196.1
National Assessment				VL	Five tiers	515	$7 - 44 \pm 0.5$	29.7	8.0	27	2.5	9.5	24.1	38.8	98.6	33.6	85.4	77.2	196.1
				L1	One tier	800	$7 - 44 \pm 0.5$	37.2	1.1	6.8	0.6	48.6	123.4	41	104.1	33.6	85.4	77.2	196.1
			E-41	L2	Two tiers	800	$7 - 44 \pm 0.5$	37.2	1.1	13.6	1.3	23.6	59.9	41	104.1	33.6	85.4	77.2	196.1
				VL	Five tiers	515	$7 - 44 \pm 0.5$	37.2	1.1	34	3.2	9.5	24.1	46.3	117.5	33.6	85.4	77.2	196.1
			PGC-6	L2	Two tiers	680	7 - 44 ± 0.5	36	1	10.8	1	27	68.6	50.5	128.3	33.6	85.4	77.2	196.1
			Horizontal	Lighting	g – Large Chan	nbers													
	40		PGC-9/2		One Tier	660	$7 - 44 \pm 0.5$	34.8	1.0	11.1	1	29.8	75.7	75.8	192.6	37.8	96	79.3	201.3
	160		E-75	L1	One tier	1360	$7 - 44 \pm 0.5$	76.1	2.2	10.8	1	59.5	151.1	76.9	195.3	37.5	95.3	78.5	199.4
			PGC-10	L1	One tier	1450	$7 - 44 \pm 0.5$	64	1.8	10.1	0.9	48	121.9	71	180.3	38.8	98.6	78.8	200
			PGC-15	L1	One tier	1520	$7 - 44 \pm 0.5$	94.8	2.7	15.1	1.4	48	121.9	95.3	242.2	38.8	98.6	78.8	200
			PGC-105	L1	One tier	1450	$7 - 44 \pm 0.5$	108.3	3.1	17.1	1.6	56	142.2	105.9	269	38.8	98.6	78.8	200
			PGC-20	L1	One tier	1600	$7 - 44 \pm 0.5$	147.9	4.2	18.4	1.7	68.7	174.5	100.5	255.3	40.6	103.2	111.1	282.3
			PGC-40	L2	Two tiers	1200	7 - 44 ± 1.0	147.9	4.2	36.7	3.4	32.7	83	100.5	255.3	40.6	103.2	111.1	282.3
	8		*PGC-9/2 Chamber has two separately controlled compartments - specifications are per compartment unless otherwise specified. Exterior dimensions are for entire chamber including both compartments. Dual Chamber Series*																
A Commence of the Commence of		TITTE TO THE PARTY OF THE PARTY	E-22	L1	One tier	680	7 - 44 ± 0.5	14.6	0.4	5.4	0.5	20.2	51.3	33.5	85.1	36.6	93	77.9	197.8
		THITTINI THE		-1		030		ations, exclu						00.0	00.1			77.5	101.0

Arabidopsis (standard with SciWhite* lighting)

Not only have we met the steady demand for our Arabidopsis chambers, but we've re-engineered them to become a preferred choice of researchers who use Arabidopsis thaliana worldwide. These chambers come standard with SciWhite® lighting, featuring a white spectrum enriched with red for superior light absorption in plants. They are also ideal for other plants that grow in low light, such as tobacco, Brassica, lettuce and spinach.

- White spectrum with 660 nm peak red for best light absorption
- Easy to program with the IntellusUltra control system
- Optional SciBrite® lighting

Model	Con	figuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior	Space	She	tal ving Area	Gro	mum wing ght	wi	E x		imensio pth		ight
			µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
AR-36	L2	Two tiers	350	$7 - 44 \pm 0.5$	29.7	0.8	10.8	1	21.8	55.2	33.5	85.1	33.6	85.4	77.2	196.1
AK-30	L3	Three tiers	350	7 - 44 ± 0.5	29.7	0.8	16.2	1.5	13.5	34.3	33.5	85.1	33.6	85.4	77.2	196.1
AR-41	L2	Two tiers	405	7 - 44 ± 0.5	37.2	1.1	13.6	1.3	23.6	59.9	41	104.1	33.6	85.4	77.2	196.1
AK-41	L3	Three tiers	405	7 - 44 ± 0.5	37.2	1.1	20.4	1.9	15.1	38.3	41	104.1	33.6	85.4	77.2	196.1
AR-66	L2	Two tiers	360	7 - 44 ± 0.5	62.4	1.8	20.3	1.9	23.1	58.7	66	167.6	33.6	85.4	77.2	196.1
AK-00	L3	Three tiers	360	7 - 44 ± 0.5	62.4	1.8	30.4	2.8	14.0	35.6	66	167.6	33.6	85.4	77.2	196.1
AD 75	L2	Two tiers	350	7 - 44 ± 0.5	71.6	2	21.5	2	27.9	71.0	76.9	195.3	37.1	94.3	78.5	199.4
AR-75	L3	Three tiers	350	7 - 44 ± 0.5	71.6	2	32.2	3	18.3	46.4	76.9	195.3	37.1	94.3	78.5	199.4
40.05	L2	Two tiers	575	7 - 44 ± 0.5	95.9	2.7	28.6	2.7	27.5	69.9	95.9	243.5	37.1	94.3	78.5	199.4
AR-95	L3	Three tiers	575	7 - 44 ± 0.5	95.9	2.7	42.9	4	18.0	45.7	95.9	243.5	37.1	94.3	78.5	199.4
AR-100	L3	Three tiers	600	7 - 44 ± 0.5	147.9	4.2	55.1	5.1	22.3	56.6	100.5	255.3	40.6	103.2	111.1	282.3
Dual Cham	ber Ser	ies'														
AR-22	L1	One tier	350	$7 - 44 \pm 0.5$	14.6	0.4	5.4	0.5	20.2	51.4	33.5	85.1	36.6	93	77.9	197.8

^{*} Specifications, excluding exterior dimensions, are per compartment only.

Agae (standard with SciWhite* lighting)

Specifications

can be us	plants. Beca sed for a va ications	use of th	neir versatil	ity, the	ese ch	amber	s also											W.
Model	Configuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior		Tot Shelv Floor	ving		mum wing ght	wi		c terior D i	imensio pth	o ns	ight		THE PARTY OF THE P	TILL
		µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm	ž		THE PERSON NAMED IN
Vertical Light	ting – Four Colors															Ø.		11
AL-30	L2 Two tiers	440	7 - 44 ± 0.5	9.9	0.3	6.1	0.6	10.4	26.4	31	78.7	24.4	61.9	46.2	117.3			
AL-36	L4 Four tiers	350	$7 - 44 \pm 0.5$	29.7	8.0	21.6	2	10.6	26.9	33.5	85.1	33.6	85.4	77.2	196.1			
AL-41	L4 Four tiers	405	$7 - 44 \pm 0.5$	37.2	1.1	27.2	2.5	10.6	26.9	41	104.1	33.6	85.4	77.2	196.1			
Dual Chamba	on Contract													1				
Dual Chambe	L2 Two tiers	350	7 - 44 ± 0.5	14.6	0.4	10.8	1	8.8	22.4	33.5	85.1	36.6	93	77.9	197.8			4

^{*} Specifications, excluding exterior dimensions, are per compartment only.

AL-36L4

Low Temperature (standard with SciWhite* lighting)

Our low temperature plant growth chambers give you the ability to measure cold hardiness, freeze tolerance, heat stress and exposure using a full range of seasonal temperatures. They come standard with SciWhite® lighting, featuring a white spectrum enriched with red for superior light absorption in plants. (SciBrite® lighting is optional.) By design, they consistently maintain low temperatures under high-intensity light without temperature spikes. A self-contained air-cooled condensing unit ensures precise temperature control. These chambers are frequently used for research involving vernalization, cold water algae and ocean algae.

Specifications

Model	Configuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior volu	Space me	To Shel Floor	ving	Gro	imum wing ight	wi	E x		imensio pth		ight
		µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
LT-41	VL Two tiers	515	-10 - 44 ± 0.5	37.2	1.1	13.6	1.3	21.5	54.6	46.3	117.5	33.6	85.4	79.9	202.9
LT-105	One tier	1450	-10 - 44 ± 0.5	122.9	3.5	16.0	1.5	56	142.2	117.3	298	38.8	98.6	78.8	200.0

LT-41VL

Tissue Culture (standard with SciWhite* lighting)

This line of chambers provides the ideal environment for plant tissue culture on plates, Petri dishes or in flasks. They're engineered with slow, vertical airflow to insulate dishes on shelves from heat generated by the lighting below and minimize condensation. This also ensures precise temperature control across shelving. They come standard with PetriClear lighting (Pat. Pend.), proven to reduce condensation on unstacked Petri dishes using a twochannel combination of SciWhite and infrared LEDs.

- · Air diffuser with slow, vertical airflow insulates shelf level experiments from heat generated by the underlying light fixture
- Dimmable PetriClear lighting with low heat emission
- · Precise temperature control across shelving
- Optional SciBrite® lighting

Model	Con	figuration	Light Intensity 6" from lamps	Temperature Range with all lights on		r Space	To Shel Floor		Gro	imum wing ight	wi	Ex dth		imensio pth	ns	
			µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
CU-30	L2	Two tiers	190	10 - 44 ± 0.5	9.6	0.3	6.1	0.6	9.1	23.1	31	78.7	23.8	60.3	46.1	117.2
CU-36	L4	Four tiers	170	10 - 44 ± 0.5	29.7	0.8	21.6	2.0	9.3	23.5	33.5	85.1	33.6	85.4	77.2	196.1
CU-30	L5	Five tiers	170	10 - 44 ± 0.5	29.7	0.8	27.0	2.5	6.7	17	33.5	85.1	33.6	85.4	77.2	196.1
CU-41	L4	Four tiers	200	10 - 44 ± 0.5	37.2	1.1	27.2	2.5	9.3	23.5	41	104.1	33.6	85.4	77.2	196.1
CU-41	L5	Five tiers	200	10 - 44 ± 0.5	37.2	1.1	34.0	3.2	6.7	17	41	104.1	33.6	85.4	77.2	196.1
Dual Cham	ber Seri	ies*														
CU-22	L2	Two tiers	350	10 - 44 ± 0.5	14.6	0.4	10.8	1	7.5	19.1	33.5	85.1	36.6	93	77.9	197.8

^{*} Specifications, excluding exterior dimensions, are per compartment only.

Dew Formation

Percival Scientific manufactures the only dew chamber available for research. We've engineered it with cutting-edge technology to closely simulate the natural dew formation process required for pathology research studies. These chambers are also useful for inoculating plants and other applications. They come standard with SciWhite® lighting, featuring a white spectrum enriched with red for superior light absorption in plants.

- Plants are maintained below dew point of air
- Heat sink below warming water causes vapor to rise and form dew on plants
- Not intended for long-term plant growth

Specifications

Model	Configuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior	Space	To Shel Floor		Gro	mum wing ght	wie		cterior D	imensio pth		eight
		µmoles/m²/s	°C	ft³	m^3	ft²	m²	in	cm	in	cm	in	cm	in	cm
I-36D	Four tiers	No Light	10 - 32 ± .75	29.7	0.8	19.5	1.8	10.5	26.7	33.5	85.1	33.6	85.4	77.2	196.1
I-36DL	Four tiers	500	12 - 32 ± .75	29.7	0.8	19.5	1.8	10.5	26.7	33.5	85.1	37.4	95.1	77.2	196.1

I-36DL comes standard with SciWhite® lighting.

I-36D

Seed Germination

Our seed germination chambers precisely control light, temperature and humidity to activate the growth of nearly any kind of seed. Their wide environmental range makes them ideal for cold-weather plants like spinach and broccoli as well as hot-weather varieties such as peppers and tomatoes. They feature IncuWhite® LED lighting, which closely matches natural light. Researchers rely on these chambers as a standard for studying the effects of climate change on the germination and development of native plant species and for many other applications.

M	odel	Co	nfiguration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior volu	Space	She	tal ving Area	Gro	mum wing ght	wi	Ex dth		imensio pth		ight
				µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
G	R-36	L	Fifteen tiers	140	$5 - 44 \pm 0.5$	29.7	8.0	76.5	7.1	2.6	6.7	33.5	85.1	33.6	85.4	77.2	196.1
G	R-41	L	Fifteen tiers	120	5 - 44 ± 0.5	37.2	1.1	96.4	9	2.6	6.7	41	104.1	33.6	85.4	77.2	196.1
G	R-66	L	Fifteen tiers	120	5 - 44 ± 0.5	62.4	1.8	153	14.2	2.6	6.7	66.0	167.6	33.6	85.4	77.2	196.1

Incubators

Percival's incubators stand the test of time with durable all-steel construction and versatile features for a variety of applications. They give researchers precise control of lighting, temperature and humidity for consistent performance. They also feature IncuWhite® LED lighting, which closely matches natural light. As some of our long-time best-selling chambers, they are touted by customers as reliable, easy to maintain and a great return on investment.

- Low-Cost Germination
- Low-Light Photosynthesis
- BOD Determination

- Plant Seedling Growth
- Insect and Amphibian Studies
- Algae Acclimation

Bacterial Culturing

Model		figuration	Light Intensity 6" from lamps	Temperature Range with all lights on	Interior		She	tal ving Area	Gro	mum wing ight	wi	E x		imensio oth		ight
			µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
No Lighting																
I-30	NL	Three tiers	No light	2 - 44 ± 0.5	9.6	0.3	9.1	0.8	8.5	21.6	31	78.7	23.8	60.3	46.2	117.3
I-36	NL	Six tiers	No light	$2 - 44 \pm 0.5$	29.7	8.0	32.3	3	8	20.3	33.5	85.1	33.6	85.4	77.2	196.1
I-41	NL	Six tiers	No light	$2 - 44 \pm 0.5$	37.2	1.1	40.8	3.8	8	20.3	41	104.1	33.6	85.4	77.2	196.1
I-66	NL	Six tiers	No light	$2 - 44 \pm 0.5$	62.4	1.8	64.7	6	8	20.4	66	167.6	33.6	85.4	77.2	196.1
Vertical Lig	hting															
I-36	VL	Five tiers	120	$4 - 44 \pm 0.5$	29.7	8.0	27	2.5	9.5	24.1	33.5	85.1	33.6	85.4	77.2	196.1
I-41	VL	Five tiers	120	$4 - 44 \pm 0.5$	37.2	1.1	34	3.2	9.5	24.1	41	104.1	33.6	85.4	77.2	196.1
I-66	VL	Five tiers	120	$4 - 44 \pm 0.5$	62.4	1.8	54	5	9.5	24.1	66	167.6	33.6	85.4	77.2	196.1
Horizontal	Lighting															
I-30	L	Three tiers	125	$5 - 44 \pm 0.5$	9.6	0.3	9.1	0.8	9.2	23.4	31	78.7	23.8	60.3	46.2	117.3
I-36	LL	Four tiers	120	$4 - 44 \pm 0.5$	29.7	8.0	21.6	2	11.3	27.8	33.5	85.1	33.6	85.4	77.2	196.1
I-41	LL	Four tiers	100	$4 - 44 \pm 0.5$	37.2	1.1	27.2	2.5	11.3	27.8	41	104.1	33.6	85.4	77.2	196.1
I-66	LL	Four tiers	120	$4 - 44 \pm 0.5$	62.4	1.8	43.1	4	11.3	27.8	66	167.6	33.6	85.4	77.2	196.1
Vertical and	l Horizo	ntal Lighting														
I-36	LLVL	Four tiers	230	$5 - 44 \pm 0.5$	29.7	8.0	21.6	2	11.3	27.8	33.5	85.1	33.6	85.4	77.2	196.1
I-41	LLVL	Four tiers	220	$5 - 44 \pm 0.5$	37.2	1.1	27.2	2.5	11.3	27.8	41	104.1	33.6	85.4	77.2	196.1
I-66	LLVL	Four tiers	230	$4 - 44 \pm 0.5$	62.4	1.8	43.1	4	11.3	27.8	66	167.6	33.6	85.4	77.2	196.1
Dual Cham																
I-22L	T۱	wo tiers	120	4 - 44 ± 0.5	14.6	0.4	10.8	1	10	25.4	33.5	85.1	36.6	93	77.9	197.8

^{*} Exterior dimensions are for entire chamber including both compartments

Drosophila

Scientists have long trusted our traditional Drosophila chambers for rearing fruit flies and maintaining stock for research. We've designed them with a special phenolic coating to protect chamber components from the acidic environment of insect rearing. The IntellusUltra control system allows users to program and fine tune the temperature and humidity settings to perfectly match the environment required for healthy Drosophila.

Thermoelectric for Drosophila

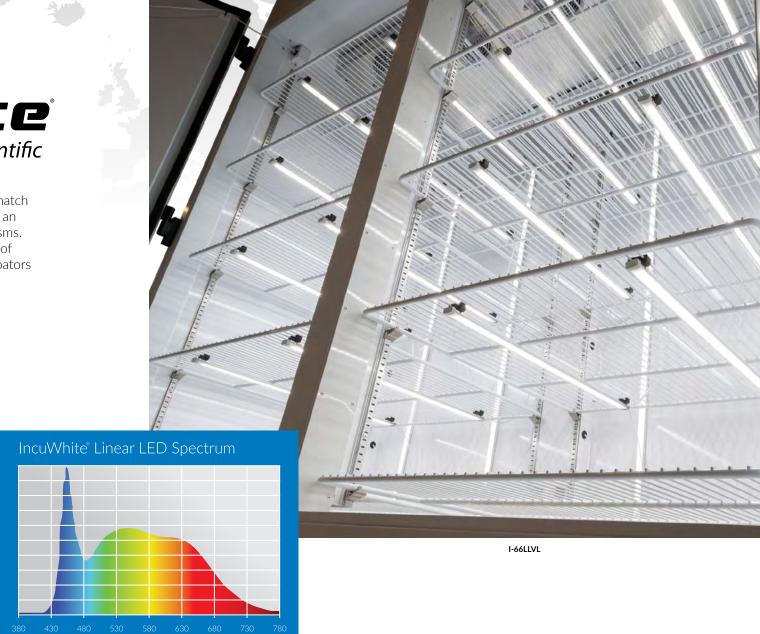
Our TE-36VL Drosophila chamber uses thermoelectric cooling instead of refrigeration for consistent temperature control, reliability and easy maintenance.

Specifications

Mod	el	Con	figuration	Light Intensity 6" from lamps	Temperature Range with all lights on		Space	To Shel Floor		Gro	imum wing ight	wi	Ex dth		imensio pth		ight
				µmoles/m²/s	°C	ft³	m³	ft²	m²	in	cm	in	cm	in	cm	in	cm
DR-3		NL	Six tiers	No Light	2 - 44 ± 0.5	29.7	0.8	32.3	3	8	20.3	33.5	85.1	33.6	85.4	77.2	196.1
DK-3	90	VL	Five tiers	120	5 - 44 ± 0.5	29.7	0.8	27	3.2	9.5	24.1	33.5	85.1	33.6	85.4	77.2	196.1
DR-4	14	NL	Six tiers	No Light	2 - 44 ± 0.5	37.2	1.1	40.8	3.8	8	20.3	41	104.1	33.6	85.4	77.2	196.1
DR-4	FI	VL	Five tiers	120	5 - 44 ± 0.5	37.2	1.1	34	3.2	9.5	24.1	41	104.1	33.6	85.4	77.2	196.1

All DR models come standard with additive humidity.

Thermoeled	ctric															
TE-36	VL	Five tiers	100	13 - 70 ± 0.5	29.7	0.8	25.3	2.3	11	27.9	33.5	85.1	39.3	99.8	77.2	196.1



IncuWhite

by Percival Scientific

Our engineers designed these white LEDs to match natural light inside our incubators. This creates an ideal environment for insects and other organisms. Compared to fluorescent lighting, the benefits of IncuWhite® make our best-selling, reliable incubators an even more valuable investment:

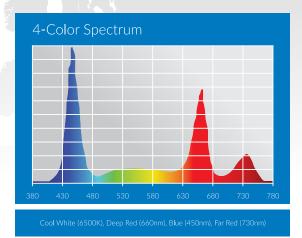
- Increased shelf space and growing height due to streamlined design
- Significantly longer light lifetime
- Brighter light intensity
- More closely matches natural light
- Flicker-free and dimmable in one-percent increments
- More resistant to dust and water (protected from low-pressure jets)
- Lower energy use

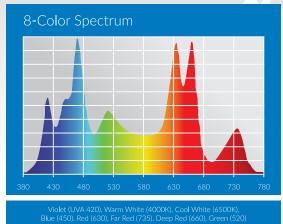
Percival Scientific's proprietary SciBrite® LEDs are backed by years of research and development. This high-intensity, dimmable lighting system offers more color combinations than most chamber manufacturers and comes in four-color or seven-color configurations.

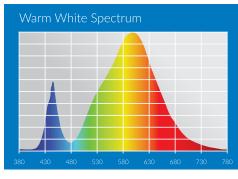
Precise Color Control

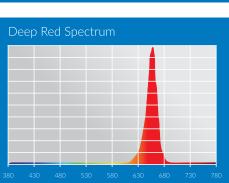
Not only do SciBrite® LEDs allow control over the composition and intensity of each color, specific light wavelengths can be selected and controlled, making SciBrite® lighting ideal for a wide range of scientific applications.

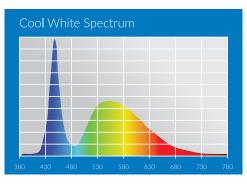
Better Performance and Efficiency

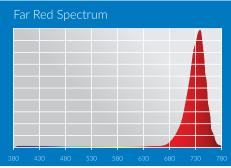

Among their many benefits, these groundbreaking LEDs consume less energy and provide more uniform distribution throughout the chamber while introducing considerably less heat than fluorescent lamps.

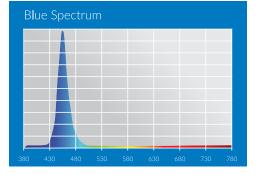

- More control over color composition and intensity
- Less demand on the temperature control system
- Improved humidity control and performance
- Improved temperature uniformity
- Improved light distribution
- Smaller day/night calibration offsets
- Reduced energy use
- Lower heat rejection to ambient
- Improved system responsiveness
- Increased lifespan of vital chamber components
- Increased growth height

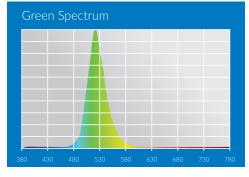


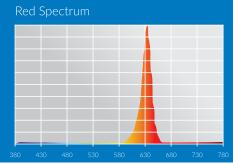

SciBrite Spectrums

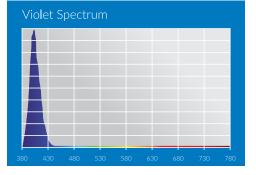

Percival chambers with SciBrite® lighting provide the correct spectral quality at the correct irradiance with exceptional environmental control. Create your own spectrum by adjusting the individual color spectrum ranges shown below. A multiple-channel dimming system allows advanced control of light output for each LED color from 1 to 100 percent in one-percent increments.

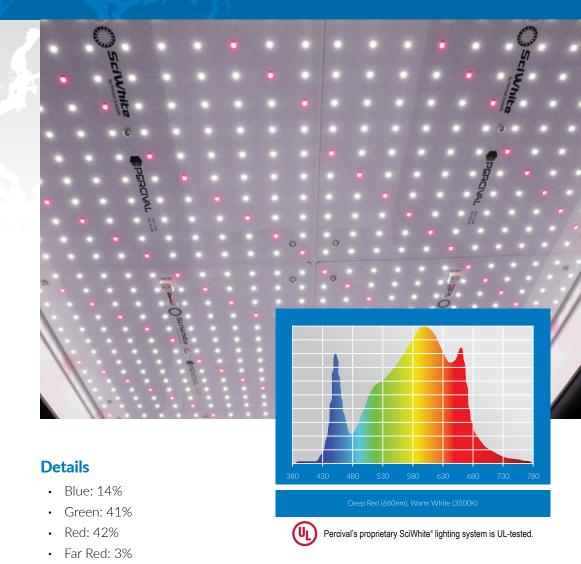












SciWhite® is Percival's highest-performing and most efficient white LED lighting system. Enhanced with red for optimized plant growth,* the SciWhite® spectrum also provides superior uniformity. These LEDs make a long-lasting, cost-effective solution and offer many of the same benefits as our SciBrite® LEDs when compared to fluorescent lamps.

- More control over light intensity
- Less demand on the temperature control system
- Improved humidity control and performance
- Smaller day/night calibration offsets
- Reduced energy use
- · Lower heat rejection to ambient
- Improved system responsiveness
- Increased lifespan of vital chamber components
- Increased growth height

Enhanced Spectrum for Plant Growth

- Based on industry research
- Added red for optimal light absorption
- Lower-cost alternative to SciBrite lighting

Our enriched white spectrum with **660 nm peak red** provides the **best light absorption** for plant growth. Our proprietary LED configuration delivers this spectrum with **unparalleled light uniformity**. The light output is also dimmable from 100 to 10 percent in one-percent increments and is customizable for specific light output requirements.

Customized Lighting Options

Percival Scientific leads the industry in specialized lighting for scientific chambers, offering more lighting options than any other chamber manufacturer. Our full range of specialty lighting features uniquely engineered lamp banks that provide maximum irradiance without sacrificing temperature control.

All our lighting solutions can be customized for any size unit, from bench-tops to walk-in rooms. No chamber company works more closely with you than we do to match the best lighting options with your research needs.

- SciBrite® LEDs
- SciWhite® LEDs
- IncuWhite® LEDs
- · White LED flat panels
- · HID
- UV
- Germicidal
- Aquatic
- Incandescent

IntellusUltra Touchscreen Interface

Most Percival Scientific chambers* come standard with a high-resolution touchscreen interface for programming the IntellusUltra (C8) or IntellusUltraConnect (C9) control system. It displays advanced settings and data for fine-tuning your research, including graphs and charts. Multi-touch sensitivity makes programming your chambers easier than ever.

- 10.1" IPS high-resolution display with 10-point multi-touch sensitivity
- Tabular and graphical presentation of chamber programs and parameters
- Highly visible process values and alarm notifications
- Enhanced user feedback menus

^{*} Incubators and tissue culture chambers excluded

IntellusUltra Control Systems

Percival Scientific listens carefully to what our customers want from a chamber control system. In response, we've refined our IntellusUltra (C8) and our IntellusUltraConnect (C9), two of the highest standard controllers available in the life science market. Adaptive to nearly any programming style you prefer, these intuitive platforms provide built-in protection and a large range of options for more control over experiments.

- · Robust and reliable industrial-grade integrated hardware design
- Highly flexible design allows for customized configurations and expansion
- Precise, simultaneous control of up to seven environmental parameters
- Industry-leading experiment protection and system diagnostics

Added Features of IntellusUltraConnect (C9)

- · Remote monitoring
- · Customizable system notifications
- · Cloud-based data logging

IntellusUltra

WeatherEze

Revolutionary Control System Software for Climate Based Research

Percival's exclusive WeatherEze control system software gives you the amazing ability to replicate current or past global weather patterns.

Real-Time Control

If you want to match current conditions, real-time METAR weather data, the same information used by meteorologists, can be downloaded from nearly any global location* and used to program the relative humidity, lighting and temperature for your chamber. As the METAR data changes, the chamber conditions are updated to duplicate the global location with unsurpassed realism.

* The United States and Europe produce ample METAR data; however, some data gaps exist in isolated areas of the world.

Climate Change Scenarios

By linking to quality data, WeatherEze allows researchers to run climate change model scenarios with just a few clicks. Twenty-one different models and seven emission scenarios are currently supported through public data (World Bank: Open Data Catalog).

Historical Simulations

This program simulates the average weather conditions from a selected location beginning and ending with the historical dates you choose. Want to match the natural light, humidity and temperature of January 2000 in Brazil? WeatherEze can do that!

Customized Weather Data

Users can edit weather data generated by the software or upload their own data sets.

Contact a Percival representative or visit our website at percival-scientific.com to learn more about what WeatherEze can do to revolutionize your research.

Optional Product Features

All options are not available for every chamber. Contact sales@percival-scientific.com with questions.

CODE	OPTION DESCRIPTION	CODE	OPTION DESCRIPTION
C8T	IntellusUltra and Android-based Touchscreen	Q11	Air Filter Assembly (insect screen)
C9	IntellusUltraConnect (includes PercivalConnect® software)	Q12	Full Size Glass Door
C9T	IntellusUltraConnect and Android-based Touchscreen	Q18	Stacking Hardware for 30 Series
C12	WeatherEze Software (Compatible with Windows Only; Requires C9)	Q19	External Drip Pan
EXW	Extended Warranty (annually) - Additional 1, 2 or 3 Years	Q22	Closed Loop Dimmable Lighting Control with PAR Light Sensor
H1	Pan-type Humidifier and Electronic RH Sensor (0-1VDC)	Q23+	Open Loop Dimmable Lighting Control (each shelf is independently dimmable by percentage)
H3	Pan-type Humidifier, Dehumidifier, and Electronic RH Sensor (0-1VDC)	Q24	LED Working Light (energized when door opens)
H6	Pan-type Humidifier, Dehumidifier, and Advanced RH Sensor (0-5VDC)	Q29	Left-Hand Door Swing
H11	Ultrasonic Humidifier and Advanced RH Sensor (0-5 VDC)	Q30	Additive Carbon Dioxide Control with 2000 ppm Sensor
H12	Ultrasonic Humidifier, Dehumidifier, and Advanced RH Sensor (0-5VDC)	Q31	Additive Carbon Dioxide Control with 5000 ppm Sensor
H14	Ultrasonic Humidifier and Electronic RH Sensor (0-1VDC)	Q32	Additive Carbon Dioxide Control with 10% Sensor
H15	Ultrasonic Humidifier, Dehumidifier, and Electronic RH Sensor (0-1VDC)	Q33	Carbon Dioxide Removal System (Requires Q30, Q31 or Q32 to Operate)
S1	Locking Door, Power Switch and Dry Contacts (one door)	Q41	Heavy Duty Door Handle with Latch
S2	Locking Door, Power Switch and Dry Contacts (two doors)	Q42	1 NEMA 5-15R 1A Convenience Receptacle, Programmable via Intellus Control System
S3	Remote phone auto-dialer	WAC1	Stainless Steel Interior
S4	Dry Contact for Remote Alarm	WAC2	Water-cooled Condensing Unit
Q1	Door with Two Fresh Air Ports	WAC4	Large Observation Window (12" X 42") on Door
Q2	Observation Window with Cover (12" x 12") on Door	WAC5	Cover for WAC4
Q4	Door Lock	WAC6	Self-contained, Air-cooled Condensing Unit
Q5	Additional Epoxy Wire Shelf (each)	WAC7	Remote, Outdoor, Air-cooled Condensing Unit with All-Weather Housing
Q6	Stainless Steel Wire Shelf (each)	WTM1	Extended Temperature Range to -10°C (for non-lighted units only)
Q7	Caster Assembly with Levelers for 30 Series	WTM2	Extended Temperature Range to -10°C lights off/0°C lights on
Q9	Phenolic Coated Coil(s) (required for Drosophila research)	WTM3	Extended Temperature Range to +60°C (No refrigeration above 44°C)
Q10	Additional Access Ports (1", 2", 3" or 4" increments)	WTM4	Extended Temperature Range to +60°C with Continuous Running Condenser
Contact Percival Scientific for comprehensive warranty program information.			

